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Abstract

A series of AIN/GaN heterostructures were grown on 150 mm Si substrates by metal organic chemical
vapor deposition (MOCVD). Different cap layer structures, including gallium nitride (GaN) and
silicon nitride (SiN,), were used to passivate the heterostructure surface. A 3.5 nm thick SiN, cap is
able to maintain the two dimensional electron gas (2DEG) stability in along period. An AIN/GaN
heterostructure with a 4.5 nm thick AIN barrier exhibits the best 2DEG properties, in terms of sheet
resistance, carrier mobility and stability. The carrier mobility of the 2DEG can be enhanced by a
combination of SiNx and GaN cap layers to over 1400 cm”/Vs.

1. Introduction

The commercialization of gallium nitride (GaN) based high electron mobility transistor (HEMT) has accelerated
in recent years [1, 2], owing to its proven capability in reducing switching losses, sustaining high breakdown
voltages, as well as maintaining high temperature stability [3]. The progress in the epitaxial growth of GaN on
large size Si substrate reduces the production cost. Meanwhile, HEMT devices on Si can be easily integrated to
the existing Si foundries [4—6]. The above benefits bring the GaN based HEMT device closer to the mass market
applications.

The barrier layer is one of the key components in the HEMT device, which determines the resistance of the
conduction channel. AlGaN is the most commonly used barrier material. The two-dimensional electron gas
(2DEG) formed at the AlGaN/GaN interface region shows good stability, low sheet resistance, high carrier
density, and high electron mobility [7, 8]. AIN as a barrier material also attracts attention due to the formation of
even higher 2DEG density at the AIN/GaN interface region [9]. A sheet resistance (Rs) value as low as 128 £2/sq
has been reported, with a 2DEG density of 3.21 x 10" /cm? [10]. Besides, the alloy scattering can be avoided in
the AIN system, which enhances the 2DEG hall mobility [11, 12]. AIN barrier based HEMT devices, with low
gate leakage and high I, /I g ratio, has been demonstrated [13]. Table 1. summarizes the recent studies on AIN/
GaN heterostructures with the best Rs performances.

However, the relaxation of AIN is one major challenge, due to the large lattice mismatch (2.5%) with the
GaN channel layer. Silicon nitride (SiNy) cap has been employed as a surface passivation layer to avoid/reduce
the AIN relaxation [14]. However, the effect of the composition and thickness of the passivation cap layer on
suppressing the relaxation has rarely been studied. In this paper, we reported on the long term 2DEG stability of
the AIN/GaN heterostructure incorporating in situ grown GaN and/or SiN, cap layers.

2. Experiments

A series of AIN/GaN heterostructures were prepared in an Aixtron close coupled showerhead (CCS) 6 x 2
MOCVD system on 150 mm highly resistive (>3000 §2 - cm) Si (111) wafers. Trimethylgallium (TMGa) and
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Table 1. Summary of the AIN/GaN ultrathin heterostructure parameters.

Sample AIN (nm) Cap (nm) Substrate Rs(2/sq) Ns (/cm?) Growth method

[14] 6 6 (SiNy) Si 186 2.5el3 MOCVD
[15] 4.5 1(GaN) sapphire 409 2.2el13 MBE
[10] 3.5 none sapphire 128 3.2e13 MBE
[12] 3 2 (GaN) sapphire 1.3e12 MOCVD
D 6 3.5 (SiNy) Si 178 3.9¢e13 MOCVD

Table 2. Structural parameters of samples A-H.

AIN barrier GaN cap thick- SiNx cap thick-

sample thickness (nm) ness (nm) ness (nm)

A 7 0 0

B 7 0 2

C 7 0 3.5

D 6 0 3.5

E 4.5 0 3.5

F 3.5 0 3.5

G 2.5 0 3.5

H 4.5 2 3.5

trimethylallunium (TMALI) were used to provide the metal elements, while ammonia (NH;) was used as the
group V precursor. The Si wafer was first heated to 1050 °C in hydrogen (H,) to remove the native oxide before
growth. After a short TMAl pretreatment, a 150 nm AIN nucleation layer was deposited. During the AIN growth,
averylow V /Il ratio (~30) was used to suppress the gas phase reactions of TMAL After that, four layers of step
graded AlGaN were grown, and the Al contents were 0.60, 0.50, 0.40 and 0.25, respectively. The total thickness of
the AlGaN bulffer layer was ~1000 nm. Then, a 1000 nm thick unintentionally doped GaN channel layer was
grown. H, was used as the carrier gas during the (Al, Ga) N buffer and the GaN channel layer growth. The AIN
barrier layer with thicknesses ranging from 2.5 to 7 nm was grown at ~900 °C. Nitrogen (N,) was used as the
carrier gas, which promotes the diffusion of Al atoms on the surface, and suppresses the GaN decomposition in a
low NH; ambient. During the AIN barrier growth, trimethylindium (TMIn) was used as a surfactant to improve
the layer quality. Unintentional gallium incorporation during the InAIN alloy growth in CCS reactors has been
demonstrated [16—18]. It may also happen during the (In)AIN barrier growth and impact the 2DEG properties.
Finally, the in situ SiN, cap layers with different thicknesses were deposited at the AIN barrier growth
temperature, i.e., 900 °C. The NH;/SiH, ratio during the growth was ~3500, and the growth rate was

~1.3 um h ™" After cooling down, the bow of these wafers was measured to be less than 10 zzm and the surface
was crack free with <3 mm edge exclusion. Table 2 lists all the structural parameters of the samples studied.

A Lehighton contactless mobility mapping system (LEI-1600) was used to measure and map the sheet
resistance of the heterostructure across the whole wafer. The 2DEG sheet carrier density and mobility can also be
measured, using Hall method embedded in the LEI-1600 system [19]. The Park XE15 Atomic Force Microscope
(AFM) was used to evaluate the sample surface roughness. The Bruker D8 Discover x-ray diffraction (XRD) tool
was used to characterize the Al composition in the step-graded buffer layer. The AIN barrier and cap layer
thicknesses were deduced from the x-ray reflectivity (XRR) curves, which were also measured by the Bruker D8
XRD system.

3. Results

To study the influence of SiNy cap layer thickness on the relaxation behavior of AIN barrier, in situ grown SiNy
layer with thicknesses of 0 (no cap layer), 2.0 and 3.5 nm on the same AIN/GaN heterostructure were prepared,
labeled as sample A, B and C, respectively. The AIN barrier thickness was 7 nm. Due to the large lattice
mismatch, strong tensile stress exists in the AIN layers grown on GaN, and the critical thickness was reported in
the range of 6—8 nm [20]. Therefore, the current heterostructure could possibly undergo a lattice relaxation after
the epitaxial growth. The Rs values of these samples were recorded once per week in the following month.

Figure 1 showed the sheet resistance changes of the AIN/GaN heterostructure as a function of time after growth.
The initial R, values for samples A, B and C were 320, 192 and 190 §2/sq, respectively. Among these samples,
sample C exhibited the highest R; stability, with a ~10% increase from 190 to 209 €2/sq three weeks later.
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Figure 1. The variation of the R; of AIN/GaN heterostructures with SiN, cap layer thickness ranging from 0 to 3.5 nm. The AIN
barrier thickness is 7 nm.
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Figure 2. The variation of R, as a function of time, for AIN barrier thicknesses ranging from 2.5 to 7 nm. All the samples have a 3.5 nm
thick SiNy cap layer.

Actually, the Rs value remained almost unchanged after the second week, which indicates a stable structure in
sample C. In contrast, the R, of samples A and B quickly increased in the first week and gradually stabilized
afterwards. The R, of sample A, which has no SiNy cap layer, deteriorated ~133% from 320 to 748 €2/sq by the
end of the third week. This change is mainly due to the sheet carrier density decrease, suggesting that a strong
relaxation in the AIN layer happened. Based on the observed R changes, the degrees of barrier layer relaxation
depends on growth conditions, barrier thickness, as well as the cap layer design. The much higher initial R, value
of sample A with a 7 nm AIN barrier could also imply a fast early stage relaxation right after growth completion.
The oxidation of AIN may also contribute to the Rs increase, as the AIN barrier is exposed directly to the
atmosphere environment, without the protection of a cap layer.

Next, we investigated the Rs stability with different AIN barrier thicknesses, ranging from 2.5 to 7 nm, as
shownin table 1. These samples all had a 3.5 nm SiNy cap layer, which was effective in improving the R stability
of the AIN/GaN heterostructures. The time evolution of R; was recorded over a month, as illustrated in figure 2.
All samples with AIN barrier thicker than 3 nm showed stable R, values during this timeframe. The only sizable
increase in the R, was observed from sample G, which has a barrier thickness of 2.5 nm. The root cause of this
increase is still under investigation.

Figure 3(a) showed the variation of Ry and carrier density (N;) as a function of the barrier layer thickness.
Data were collected three weeks after growth, when the electrical and structural parameters of the
heterostructures became stable. When the AIN barrier was thinner than 6 nm, the Rs value decreased from 452
to 178 2/sq with the increasing barrier thickness. The Rs increased slightly to 209 £2/sq when the barrier was
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Figure 3. The variation of (a) Ry and N, (b) carrier mobility as a function of the AIN barrier thickness. All the samples have a SiN, cap
layer thickness of 3.5 nm.

7 nm. The R, variation was closely correlated with that of carrier sheet density (Ns), as also shown in figure 3(a).
When the barrier was relatively thin, the accumulation of 2DEG increased as the AIN thickness increased,
reducing the sheet resistance. When the barrier thickness increased to 7 nm, a decrease of N was observed. It
could be attributed to the relaxation of AIN layer, as it approaches the critical thickness of AIN on GaN [20].
Carrier mobility was another important 2DEG parameter. A higher mobility translated to a higher
transconductance of the HEMT devices [21-23]. Figure 3(b) showed the carrier mobility as a function of the
barrier thickness. The highest mobility of 1178 cm®/V's was observed when the barrier was 3.5 nm. It dropped to
alow value of 893 cm”/Vs when the barrier was 6 nm concomitant with the highest carrier density. The
degraded mobility could be attributed to the stronger interfacial scattering when the peak of 2DEG was shifted
closer to the AIN/GaN interface [15]. Finally, the decrease of N and mobility leads to the increase of Ry, when
the AIN barrier is thick (>6 nm).

Figure 4(a) showed the surface morphology of sample A, which has a7 nm thick AIN barrier and no cap layer
was grown. The measurements were conducted one month after growth. Lot of cracks presented on the surface,
which should be the result of lattice relaxation. It gave an explanation to the significant Rs increase observed in
figure 1. Figure 4(b) showed the surface of sample C, which has a 7 nm thick barrier and 3.5 nm thick SiNx cap
layer. The surface is still very smooth over one month after growth, with a root mean square (RMS) roughness as
low as 0.20 nm. The stable surface state is one important reason for the stable Rs performance. The comparison
between the surface state of sample A and C suggested that a SINx cap may counter balance the tensile strain in
the AIN barrier, and maintain a stable surface state. Similar surface characteristics have been observed by Cheng
etalin [14]. The above results indicate that a SiNx cap is effective in improving the reliability of AIN barrier
HEMT devices.

In order to fabricate a high performance HEMT device, both low 2DEG sheet resistance and high electron
mobility are desired. Although the 4.5 nm AIN barrier gave a slightly lower carrier mobility than that of 3.5 nm
barrier, the Rs value was much lower. Therefore, we used the 4.5 nm AIN barrier as a baseline to further improve
the mobility. In sample H, a2 nm thick GaN cap layer was inserted between the 4.5 nm AIN barrier and the
3.5 nm SiNj cap. As shown in figure 4(c), a smooth surface with RMS roughness of ~0.19 nm was obtained. No
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Figure 4. Surface morphology of sample A(a), C(b) and H(c), characterized by the tapping mode AFM. The scan scales are all
2 x 2 pm?and the RMS roughness are 0.40, 0.20 and 0.19 respectively. The z-scale is 5 nm.
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Figure 5. The sheet resistance (R), sheet carrier density (N;) and mobility distribution over the whole wafer of sample H.

sign of relaxation was observed. Figure 5 showed the sheet resistance, sheet carrier density and mobility mapping
of sample H. The average carrier mobility is enhanced to 1423 cm”/Vs, which is among the highest values
reported for the same AIN/GaN HEMT devices on Si substrates by MOCVD [ 14, 15]. Compared to sample E,
the mobility was enhanced by ~29%, even though the carrier density dropped from 2.66 x 10" to

1.70 x 10"°/cm’. As GaN has a smaller bandgap than AIN, the insertion of GaN modified the conduction band
edge relative to the Fermi level, thus partially depletes the carriers in the 2DEG channel [24]. According to
previous discussions, the enhancement of the mobility could be partially attributed to the reduced interfacial
carrier scattering. The sheet resistance, which was a product of carrier density and mobility, increased from 225
t0 259 2/sq. This value was still among the best reported in the literature. As shown in figure 3(a), the sheet
resistances are very sensitive to the AIN barrier thicknesses, which could be further related to the growth
temperature. By carefully adjusting the wafer temperature distribution during the growth, an AIN thickness
uniformity of 1% was obtained, and it resulted in a high Rs uniformity of ~3%, as illustrated in figure 5(c). The
2DEG properties were examined again after one month and no appreciable changes of Ry, Ny and mobility were
observed. We believe that both SiN, and GaN cap layers contribute to the long term stability of the AIN/GaN
heterostructure. Further enhancement of the 2DEG mobility could be achieved by optimizing the growth
conditions [10].

4. Conclusions

AIN/GaN heterostructures with different AIN barrier thicknesses and cap layers were studied. The cap layer
structure has significant effects on the initial 2DEG properties, as well as the long term stability. SiN, cap was
proven to be able to suppress the AIN relaxation. It was found that a 3.5 nm SiNj cap could adequately maintain
the 2DEG stability after along period of storage time. A 4.5 nm barrier AIN/GaN HEMT device with 3.5 nm
SiNj cap layer showed good performance and stability in terms of sheet resistance, carrier density and mobility.
We further demonstrated that an additional GaN cap layer could improve the 2DEG mobility.
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